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COMMENT 
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Received 18 January 1983 

Abstract. The interdimensional scaling laws of second-order phase transitions are modified 
so as to apply to the percolation threshold. Interesting results are obtained for some of 
the geometric exponents as well as for some conductivity exponents in the case of a 
metal-insulator or superconductor-normal conductor composite or a random resistor 
network. 

Interdimensional scaling laws (ISL) that connect critical exponents in similar systems 
but with different dimensionalities were first derived some years ago in the context 
of a second-order phase transition (Imry et a1 1973, Bergman et a1 1973). Starting 
from the exactly known exponent of the ZD (two-dimensional) king model, the ISL 
gave values for the exponents of the 3~ Ising model which, though not nearly as good 
as the more systematic modern approximation methods, were nevertheless quite 
respectable, i.e. u3 = 3, y 3  = 2, p3 = f as compared with the best numerical values 

We recall that the ISL were obtained by considering a system which is finite in S 
of its total number of dimensions d ,  and by comparing the transition from d- to 
(d -8)-dimensional behaviour with the transition from mean-field to critical 
behaviour. Because the latter transition, which defines the Ginzburg critical region, 
depends on the critical dimensionality dc, we have to modify appropriately the ISL of 
Bergman et a1 (1973) in order to apply them generally, and to percolation in the 
present case. For the critical behaviour of a general quantity 

2 

~3 = 0.63, y3 = 1.24,@3 = 0.32. 

X(&) OC ) E  I -xd in d dimensions, ‘P - p c ,  (1) 
where p is the volume fraction of the percolating component and p c  is the percolation 
threshold, we thus obtain 

where U is the correlation length exponent and the subscript m denotes the mean-field 
values (i.e. the values at d = d,).  While this is, of course, an approximate relationship, 
the reader can easily convince himself that it is exact to order d ,  - d and S when both 
these quantities are small. It should also be noted that (2) preserves all the linear 
scaling relationships (see Imry er a1 1973), e.g. 

2p  = d v  -yp, (3) 
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so that results obtained foi p are not independent of the results for U and yp. We 
should also point out that the derivation of (2) is valid only if the following inequality 
holds: 

S U ~  < (d, - d i- 6)/2, (4 ) 
which is indeed true for the case considered here where d, = 6, d = 3,4 ,5 ,  and S = d - 2. 

In order to deduce some numerical consequences from (2) for the percolation and 
conductivity exponents, we first use this equation for the case x = U to obtain Vd from 
the supposedly known value of u2 = $. We then use this value of V d  to obtain other 
critical exponents X d  from the supposedly known value of x 2 .  

The 2~ exponents we used include the apparently exact values for u2,  yp2, p2 due 
to den Nijs (1979), Black and Emery (1981) and Nienhuis (1982), the exact value for 
g2 (the divergence exponent of the Hall coefficient) due to Shklovskii (1977), the 
average numerical value for t2 = s2 ( t  is the exponent that characterises the vanishing 
of the conductivity in a metal-insulator composite as p + p r  while s is the exponent 
that characterises the divergence of the conductivity in a superconductor-normal 
conductor composite as p + p i )  due to Binder and Stauffer (1983), the numerical 
value for c2 (the divergence exponent of the resistance between two points on the 
percolating cluster separated by an aerial distance equal to the correlation length 6) 
due to Fisch and Harris (1978), and the numerical value for psz (the divergence 
exponent for the backbone volume) due to Kirkpatrick (1978). The results for all 
these exponents when d = 3, 4, 5 are shown in table 1 together with the input values 
at 2~ and at 6~ (the mean field values). For comparison, we show in table 2 a sample 
collection of numerical values for the same exponents in d = 3 , 4 ,  5. 

When the ISL results for U, yp, t are compared with the numerical results, it is 
clear that the values are all in good agreement. We also note that our result for t3 ,  
while in reasonable agreement with the value 1.95 of Fisch and Harris (1978), is in 
strong disagreement with the widely accepted value 1.70 (Straley 1977). Interestingly, 
a new calculation of t 3  seems to obtain values that are even closer to our result, namely 

Table 1. Calculated values of critical geometric and conductivity exponents for d = 3, 4, 
5 from interdimensional scaling laws (ISL). Input data are the mean-field (d = 6) values, 
and the d = 2 values. Note that the values for P are not independent of the values for Y 
and yp as a consequence of equation (3). Although some of the results for d = 3, 4, 5 are 
expressible as exact rational fractions, we present them in decimal form in order to facilitate 
comparison with the numerical results in table 2. 

Exponent d = 2  d = 3  d = 4  d = 5  d = 6  

P B  0.55" 1.23 1.60 1.84 2' 
P 5/36b 0.54 0.77 0.90 1 
Y 4/3b 0.94 0.73 0.59 112 
YP 43/1gb 1.74 1.38 1.15 1 
b 1.43' 1.23 1.12 1.05 1' 
I 1.28d 2.09 2.53 2.81 3 
S 1.28d 0.68 0.35 0.14 0 
g 0" 0.47 0.73 0.89 l 8  

a Kirkpatrick (1978). hNienhuis (1982). 'Fisch and Harris (1978). Binder and 
Stauffer (1983). They determine this value as an average of a number of independent 
calculations by different authors. 'Shklovskii (1977). Gefen et a1 (1981). 'Straley 
(1980a). 
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Table 2. Numerical values for some of the exponents of table 1 at d = 3,4,  5 from various 
sources which are cited below. The values for @ were obtained from the values for v and 
yp by using equation (3). 

Exponent d = 3  d = 4  d = 5  

P B  

P 

Y P  

5 

Y 

t 

S 

g 

0.9" 
0.45b 
0.88' 
1.74' 
1.12d 
1.95d 
0.70' 
0.3' 

1.1" 
0.62b 
0.66d 
1 .40d 
1 .05d 
2.37d 

- 
0.84b 
0.57d 
1.17d 

2.73d 
1 .02d 

a Kirkpatrick (1978). Heermann and Stauffer (1981). Slightly different 
values for yp3 were recently obtained by Gaunt and Sykes (1982) and Margolina et a1 
(1983). Fisch and Harris (1978). e Straley (1977). ' Bergman et a1 (1983). 

Equation 13). 

2.04 for a simple cubic random-bond network and 2.15 for a simple cubic random-site 
network (Mitescu and Greene 1983). Our result for the Hall exponent g 3  is compared 
in table 1 with a value recently obtained by simulating the Hall effect on a special 
type of random resistor network (Bergman et a1 1983). It may also be compared with 
the nodes-links picture estimate g3 = 0.5-0.6 (Straley 1980b). 
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